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~ENE~LIZ~ SOLUTIONS OF THE DYNAMIC 
PERFECT ELASTOPLASTICITY 

PROBLEbl OF 
l 

S.B. KUKSIN 

The concept of a generalized solution of an initial boundary value problem 

Translated by L.X. 

for the system of Pradtl-Reuss equations is introduced. It is shown that 
a generalized solution exists and is unique , and represents within the 
domain of elasticity a solution of the initial-boundary value problem of 
the dynamic theory of elasticity. An effective method for the approximate 
determination of the generalized solution is given, and conditions at its 
strong discontinuities are obtained. The basic results of this paper were 
published earlier without proof in /l, 2/. 

1, The Prandtl-Reuss equations. Let a perfect elastoplastic body occupy a 
three-dimensional region Q with a smooth boundary D. The state of the body is characterized, 
in Lagrange coordinates, by the stress tensor ~~j(f,zz)~ the velocity of the body particles uI (t, 
s), the elastic strain rate tensor aij(r)= (~'i,j + Vj,j)!2 and the plastic strain rate tensor 
?wi, (t.r) : i< i,iQ 3, O< 1Q T,ZE Q everywhere). 
the boundary D is free and, 

We assume that the measurable part D, of 
that the displacement rate is specified on the part D2 = D \DI. 

The density of the body is assumed constant. Assuming that it is equal to unity, we write the 
equations of elastoplastic flow and initial-boundary conditions /3/ thus 

OijkhTkt. - Ei) (r) i A,$ = 0 (1.f) 

u,’ - Tij, j = P, (1, f) (1.2) 

(Tij”,) (t. X) = 0, XEL),; v,ft%X)= v,‘(t, r), X E D, (i-3) 

Tij(O. 5)~ Tot;(Z), L.i(Og 2)~ Vo,(Z) (I.41 

where aijkk are the coefficients of elasticity, ni (c), ZE D is the outer normal to R, and 
a prime denotes a time differential. We will SUpplement(1.1)-(1.4)witt; the von Mises condition 
of plasticity/3/(t# is the deviator of the tensor Tij) 

TijD(t, I) TijD(t. 2,) <c*’ (1,s) 

The equations (f.l)--(f.j)are ClosedbythePrandtl-Reuss relations connecting the stresses 
withthe plastic strain rate 

X,,(f.r)=r.o,,B(t,r), x>o 

where x = 0 when inequality (1.5) is rigorously satisfied. ThePrandtl-Reuss relations can be 
conveniently replaced by the equivalent Drucker postulate /4/. We shall write it in the 
integrated form 

Si.,~(l,*)(T,~(t,I)--ij(Irt))d*~O (1.6) 

where ufj is a tensor field continuously differentiable in IO, T1 x (Q u 0)‘ such that 

(U*jDUIJD) (tv X) < C**; Uij (t, I) nj (Z) = 0, V.2 E 4 (1.‘;) 

The initial-boundary value problem ft.%) -(i.?iwas studied earlier by Duvaut and Lions, who 
showed in /6/ the unique solvability of the evolutionary variational inequality following from 
(i.i) - (1.7), satisfied by the stress tensor integrated with respect to time. Below we apply 

*Priki.Maten.Mekha?z.,49,4, 65%662,1985 
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to problem (1.1) - (i.;)the method of monotonic semigroups , enabling us to prove the unique 
solvability of the problem under somewhat weaker constraints than those shown in /6/ (Theoram 
l), to obtain new results concerning the qualitative properties of the solutions (Theorems 
2, 4 and 51, and to offer an effective method of deriving an approximate solution (Theorem 3). 

Let us assume that the coefficients of elasticity have the symmetry and ellipticity 
properties 

cijkh= Iljikh= (Ikh*j, aijkhpijpkh > apijkij, a> 0, VP E 1 (J.@ 

where 1 is the space of symmetric 3 x 3matrices. We introduce in 1 the scalar product (u, 
7){ = aijkh(rijTkh. 

Let us define the Hilbert spaces and the scalar products in them as 

S=L*(61;R*), (U,L')s= Uj(2)Uj(Z)d2 
I 

H = L,(B;I), (u, T)H= 
Ic 
(U(X), ~(4)~ dz 

K= {GE HIoij,j~S), (01 T)x=(u~ 1)~ + (Qq,j*uil. I)S 

Finally, let Kc be the closure on the norm of the space K of the set of smooth tensor 
fields 71, (2) such, that Tif (r)nj (2) = 0 when ZE D,. 

The natural inclusion K'C Henables us to consider each element 7E H as a functional 
on h" acting according to the formula r(w) = (T,IU)B, \-WE K". 

Let us denote by K* the component H on the norm of the space conjugate with Kc. Then 
K'c HC K* and K*is a subspace of the space of generalized tensor fields on 62. Let us 
denote the norms in the space S,H, K and K* by 1 - IS,\- I~,I-lxandI. Ix*respectively, and the 
application of the functional no KC to the element 0~ Kc, by <tl, o>. 

Let us find the closed convex subset W of the space 

7 u =(clEK'j(ff (3 D D 
'I 1, )( )<c :; 2 \ *? 

where the inequality holds for almost all ZE a. Let us examine the subdifferential of its 
characteristic function aIn representing a multivalued mapping from W into K* (see /7/J 

(1.9) 

By virtue of conditions (1.8) we can invert the mapping 

1-+I, 1 ,] - cfih =sghl,tI, 

thus ~,~=a ';!I cc,,. 
Let us carry out the substitution 1', = I'/ - U, and scalar multiply Eq.Cl.1) in H bY 

a'J'nipim (2). p E K,. Since 

oJ!,.n,) (r) = 0. I E D,; u, (J) = il. r E D2 

we have, by virtue of Gauss' formula, 

(1.10) 

From (1.6). (1.9) we obtain the inclusion 

E (L, .) E arW (T (t, .)) (1.11) 

Let us now rewrite Eq. (1.2) and initial conditions (i.4), taking into account the sub- 

stitution made 

Definition. 
of tensor fields 

u,‘- ~~~~ j=g, z Fi- v,=’ (1.12) 

Tij (0, z) = 1oij (z), U{ (0,z) E uoi (2) F&E t’oi (f)- uic (03 I) (1.13) 

We shall call the generalized solution of the problem (1.1)-(!.5)the triplet 

(I.,, rijr Eij), vi E L.,' + ui such, that 

r E L, (0. T; K"), r' E L, (0, T; H) (1.14) 

IA, U'E L, (0, T; S), E E JL (0, T'; K*) 

for which the inclusions 7 (t, a) f I!‘, (1.11) and Eq.Cl.12) hold at almost all TV [O, 7'1, and 

initial conditions (1.12) when t=O. 

Theorem 1. If 
g,g' E L, (0, T; S); h, h'~ Ll(O, T; H), 70 E W, ~0 E S 

(1.15) 
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and the tensor u,~(z)~s such that 

(k Pij, j)S + ((17 P) = (VI Il)H> vPE ” (1.16) 

for some '1 E 81, (TJ, vE H, then problem(i.1)-(1.7)has a unique generalized solution. At the 
same time, if h,g,q,,t+, are replaced, respectively, by Ah, Ag, Ar, Au,, so that the conditions 
(1.15),(1.16) remain valid and the variationinthe components of the generalized solution is 
denoted by Aui, Arij, then the following estimate will hold for any o,<t,<T: 

(~Au(t~~)~s*+~A~(i~.)~~*)'!,~(~Auo~s~-t~A~o~~~)"~ +~(I~~(T,~)(H*+IB(T~.)Is')"'~~ 
0 

Note. Condition (1.16) holds, for example, if uO,,) ES for all j and u,~(I)= 0 for *ED,. 

Here we can put n = 0, Y,,= - ai#hfkh(+). 

Definition. The cylinder Q. = (T,, T,) x RO, where O< Tl< T,Q T and R, is a smooth 

subregion of R, is called the domain of elasticity of the generalized solution provided that 

(T,,DT~jD)(t,2)~CC12-6, 6>o 

almost everywhere in QO. 

Theorem 2. The generalized solution of problem (1.1) -(1.7) constructed in Theorem 1 

solution of the boundary value problem of dynamic elasticity inthe domain of elasticity 
i.e. 

r,,j (1. r) E & (QJ, Yi, j 

the equations 

U,jk*Tl;*'-Ei](L')= 0, Vi’- Tij,jPFi 

hold almost everywhere in QO, and the boundary conditions 

(Tjjn,) (1. 2) = 0, 5 E int (Do fl 0)) 

cj (i. I) = L.,' (t, z), r E int (D, ,q D2) 

is the 

Q 0, 

(l.ii) 

(1.18) 

(1.19) 

(1.X) 

are satisfied almost everywhere on D, = D fi Xl,. Here int (Do,f: Di) is the interior of the 
set D,flDi in D,i=i,2. 

2. Proof of Theorem 1 and 2. Consider the mapping 

DI\‘ : K’+ 5’. oij - CI~,,~ 

Let DI\'*:S-*K* be its conjugate. We rewrite (1.10) as an equation in terms of K* 

5' +- DI\‘*u $ E = Ii (2.1) 

We consider the multivalued mapping 

B,: II’ x S-t K* x S, (T, u) - @I\‘*u + aI, (r)? -DIVr) 

Let us now define the Hilbert space L = H x S with scalar product ((u,, v,), (uz. v*))L = (ur, u2)~ +. 
(u,, v2)s and norm I * IL. We consider in L a multivalued mapping B with the domain of definition 

D (B) 

D (B) = {(T. u) E R’ x 5’ ( B, (T. u) 1 L # ;-7)l 

B (T, u) = Bo (1, u) ‘: L, k’ (T, u) E D (B) 

Let us denote by F(f) the pair (1 (t, *), u (t, *)) and rewrite (l.ll)-_(1.13), (2.l)intheform 
of an equation for i,(t)with muitivalued non-linearity of B 

6’ - B (5) 3 (r (t), 5 (0) = 50 P-3 
where Cp (t) = (hij (13 *)7 gi (TV ‘))t Co = (TOI Uo). By virtue of the conditions of Theorem 1 we have 

Definition /0/. 

and will be maximally 

v, ‘P’ E L, (0, T; L), 5,, E D (B) 0.3) 

The multivalued mapping E: D (E)c L-. L will be called monotonic, if 

(rl, - tlz. 6, - 01)~ > 0, Ytlj f E (8j), 81 ED (E), j = 1, 2 
monotonic if also 

(I + pE)D (E) = L, Vc,> 0 
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(here 1 denotes the unit mapping in L). 

Lemmal. The mapping B:D(B)-c L is maximally monotonic. 

Proof. When (lj, toI) E B CT,, u,), 1 = 1.2 , the following relation holds: 

((111. m,I - (12) 
<DIV'(u, - 

%L (7,. +I - (m, 4))L = 
us)? 71 - ~2) - (DIV @I- Qr ~1 - a& + 

(1)l - '129 71 - 72) 

The sumofthe first two terms on the right-hand side of the equation is zero. The third 
term is non-negative, since 
mapping /9/. 

ni E~I,~(T~). i =I,2 and the subdifferential BI, is a monotonic 

It remains to confirm the solvability of the following equation for the arbitrary P > 0. 
(T, U) E L: 

(09 u) + pB (0. u) 3 (T, v) (2.4) 

To do this we consider the following functional on K": 

Ip(51 = I,'(Z) fIu, (5): Jo0 (5) = I J lH*!W - (3. T)&P + 1 (P~~~,,Q. ,P - ",j,jui) dz 

where Iw(a) is a characteristic function of the set WCK', equal to zero when OE w and to 
~30 otherwise. The functional I,, is convex, semicontinuous from below in the weak topology 
R", and coercive. Therefore it has a unique weak minimum so= W on K", and the Euler 
equation 

dJ, (a,,\ 3 0 

holds at the point co for its subdifferential alp(o,~. But 
we have 

a.r, (0) = aJpo(u~ + af,v(u) i/7/, therefore 

a,ip + pDIV*DIVo, + aI,, 3 T/P + DIV'u (2.5) 

From (2.5) there follows the inclusion 

co 7 pDIV'u, -j- palw(u,l 3T (Y. = pDIVu, + c) 

and this implies that (u,.u,)ED(B) and inclusion (2.4) holds for (u~.IQ). 
The lemma proved above, conditions (2.3) and the theory of monotonic semigroups (see /8/, 

assumption(3.2), (3.3)togetherimply that problem (2.2) has a unique solution c(t) such that 

5, 5' E L (0, T;L) 

and E (1)~ D (B) for almost all t. From this follows the first assertion of Theorem 1. 
To prove the second assertion, we assume that 2 (f) is a solution of (2.2) for 'F - q'(f), 

io = 60'* i = 1, 2. Let us subtract frolr, the equation for Gl(t)the equation for E* (t) , and 
scalar multiply by AF (t) = r'(l)- E* (1) in L. The resulting equation and the monotonic 
character of B together imply that 

Dividing bcth sides of the equation by 1 AE(l)lr and integrating over df, we obtain the 
second assertion of the theorem. 

Let us now prove Theorem 2. Let plj (r) be a tensor field smooth in n U D , belonging 
to the space K’ and equal to zero everywhere outside R,. Then 7 (t, .)& E~J E w provided 
that E> 0 is sufficiently small for almost all t, and we have, by virtue of (l.g)-(1.11), 

(7’3 IPh - (u, Zkru. J)S - (f. kp)H > 0 
i.e. 

(u, P,J,,)S = (I - T', P)H (2.6) 

Since we can take any smooth symmetric tensor field finite in hl, as Pij Cz) I we have, 

for almost all t, 

- +(Ui, j + uj. 0 1% = aijkh (fkh - Td IU (2.3 

Here the differentiation and contraction on R, are interpreted as in the theory of 

generalized functions. From (2.7) and the Korn inequality/5, 6/it follows that the function 

ui, J is square integrable on Q. f or all i,j, and (1.17) follows from this. 
Using the smoothness of the tensor u,(t,z)proved above, we shall apply Gauss' formula to 

the left side of (2.6). By virtue of (2.7) we obtain 

S p+jnjU,dy=O 

DdlQ 

where dy is the differential of the element of the surface D. Since the trace (uijnj) (Z), z E 
D, P D, can be made equal to any tensor from C,-(D, n D,; IF)., therefore Us (r) = 0 when 
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sE int (D, n D,) and this yields (1.20). It remains to note #at the second equation of (1.18) 
follows from (1.121, and the boundary condition (1.19) from the fact that the tensor rlj(L, m) 
belongs to the space K". 

3. Approximate construction of the generalized solution, Reducingproblem (1.1) 
-(1.7) to Eq. (2.2) with the maximal monotonic operator 3, enables us to use the Trotter 

formula C/8/, corollary 4.4) for an approximate construction of the generalized solution. We 
shall use the notation of the proof of Theorem 1, and write 

gyt+(z +$B-+p(+(n-f)yo... 
. ..* t z ++?.-+~(+o))-l~ 

(I -t- PB - p(p (W-’ (4 = (a, 4 
where (c,t() is the solution of (2.4) for (st r) = at 4- PCP (et. The proof of Lemma 1 implies that 
the determination of c"(t) is reduced to n variational problems of minimizing the functionals 

Jlln (a) at different q (r), solved one after the other. We find that when n> 1, the function 

6" (4 is a good approximation to the solution of (2.2). 

Theorem 3. Let the function g:(f) be such, that cp'~ L, (0, T;L) and &,E D (B). Then 1 j(t) - 
Flu Q cc”! where: 

a) if v(t)= q does not depend on t, then 

c(n) = Ztn+ inf { 19 1~ ! BE v - B (to)} 

b) in the general case c(n) = do) n-I.‘* where cc*) does not depend on ZI. 

Proof. Assertion a) follows from the maximal monotonicity of the mapping B and corollary 
4.4 of ,'8/. Assertion b) can be obtained from a1 by replacing m(i) by a piecewise constant 
function and using the estimates of the changes in the solution accompanying the changes on 
the right-hand side of q(t) (see e.g. Lemma 3.1 of /8/j. 

Assertions analogous to Theorem 3 were proved earlier by P.P. MOSolov in /5/ for the 
problems of viscoelastoplasticity. 

4. Strong discontinuities in the generalized solutions. BY analogy with gas 
dynamics /lo/ we shall give the following definition of a strong discontinuity. 

Definition. If a hypersurface r with edge ar exists in the cylinderQr=(O, 2')~ 52 
on which the components of the generalized solution of problem (1.1)-(1.7)v,r have first-order 
discontinuity, and outside which they are continuous and bounded together with all their 
derivatives appearing in (1.1).(1.?). then r will be called a hypersurface of strong discontinuity 
and y (f)=(s~ ni (f,r)C r] a surface of strong discontinuity. 

If pi is a normal to r, then the jumps inthe tensors virrij on r in the direction N, will 
be denoted by 1~1~. [rjii. If the hypersurface of strong discontinuity r is such that [u]# Oon r 
(but [I.] may possibly, vanish on ar). then we write r = r'. 

From now on we will assume everywhere that the tensor ni(t, I) is continuously differentiable. 
Then the strong discontinuities (and the strong discontinuity surfaces) of the tensors vi (2.x) 
and Ui if. 2) will be equal. 

Theorem 4. If (to. rO) E rc, then a cylindrical neighbourhood o = (I,, f?) x ox of this point 
On Qr can be found such, that r" ;I o = (tl, f,) x (f (to) f! ox). 

Thus the surface lvV (t) may vary with time only because +' (t)# const (the discontinuity 
surface "spreads" in some directions and coalesces in others). 

Proof. Let us assume the opposite. Then the projection of the set Te on 22, which we 
shall denote by TX". has a non-zero Lebesgue measure. The function 2 - c(f.r,) has a disconti- 
nuity at the point t, for almost all r,~ r',', such that (~,.z,)E Y. Therefore the derivative 
r'(t,x), regarded as a generalized function, has a non-zero singular component equal to the 
6-function with the carrier on I-". This contradicts the smoothness of the function c(t.x) 

postulated in Theorem 1. 
Let w, r', y" = v" (fO) be the same as in Theorem 4. vj is the normal to v" and C-1 (y" c 0"; 

R3) is a space of continuous linear mappings from C,'(~' c ox) onto Ii*, We note that by 
virtue of the theorem 4 S (t, I) = (0, V (x)). 

Lemma 2. We define the continuous operator of taking the trace 

If $;TCP(s. 7 wX;RL),then aiAA($l.v,,~ $~v+J6&?EK* where Q-8 is a function of the 
surface The assertion of the lemma follows from Gauss' formula (for a greater detail see 
/ll/, Theorem 1.2). 

Let a,,' (I‘) = (L‘~.~ + L'~. ()!2 where the derivatives outside I' are understood in the point-to-point 



Sense I and are continued on r with help of the zero. Frost Gauss' fcmda we obtain 

Lemma 3. Let Jlf COW (0). Then we have 

ipDW?J=- \Fo”*h [@fk v?I + f& %) $42 -i- & @)I 

for all i E (tl., tr). Let u,C 0 be a small subdomain and fECOw 
o<f<landf=l on ol. By virtue of (2.1), (l.il)and (1.9) where 
la,,, we have 

(Eij(t? *). f(ft ')(Tij(f* .)-Uij(t! *)> >O 

for any tensor ffij (t+t) SUCh that 

(J E L, (0, T; KO),a (t, *) E w 

(@)a function such, that 
we have put pi1 = (i - f)T,j + 

(4.1) 

(4.2) 

for almost all t. Let US express &ij (t,z) in terms of u,7 given by (2.11, and taking into 
account Lemma 3, substitute into (4.l) 

"$ Itf* 3)(Iylivj + [“l~vi)(Tij-uij)dY i s 
WijfTij-UQijfdZ>O 

0 

where w s L, fQr ; I). From this we have, for almost all t, 

s f tt' 5, (lv3i Vj + [y]~ Vt) (Tag - Qij) dY > 0 (4.3) 
VW 

where the tensor uij is the same as in (4.2). In particular, substituting uij = 7ij& 6i, we 
find that 

[L& Pi = 0 (4.4) 

everywhere in o1 c r'. Let 7i$ (t. z) = 7il ft, 2 If 0.v (2)) from (t. I)E r". By virtue of Lemma 2 
we have 

(Ti,+V,)(t,5)=(7*j_Vi)(t,2), (tlt)Er”1 j-1,2,3 (4.5) 

and we can substitute in (4.3) 7iJ* as well as Tag-. Let us fix (to,zO)= r" n o1 and introduce 
a system of coordinates with unit vectors 

.I = r (r& n2 = (I& j [L’] j ) (to. s,), .s = .’ Y .2 (4.6) 

Then by virtue of (4.4) we have 

(iCliV.,Ti,+) (t", SO) = (1 [rl 1 r12”a) (I,. zo) 

From (1.5) we have 

z,,'n (I~. zO) < (c+'2)'* (4.5) 

If the inequality (4.7) i.s satisfied strictly, then al> 0, the neighbourhoods w2.0f of 
the point (I~, z& o3 Z o,C: o1 and the tensor Uij can all be found such, that 

(a,, Irl, VI) (t, 2) > (fllzD I 1~1 I ) (to. h) - al > 

everywhere in o3 and u = T* everywhere in wt\ 61~. At the same time, when a,,@, are fixed, 
a tensor c and the neighbourhood o3 can be chosen such that the quantity mes (07\ of) = a, 
will become arbitrarily small. But if the quantity c+ is sufficiently small, then the left- 
hand side of inequality (4.3) will be strictly negative. The resulting contradiction shows 

that 7,7 +n (to, X0) = (c*'2)"*. This together with (1.5), yields the values of all components of 
the tensor 7,1-n(1,.z,) in the system of coordinates (4.6) 

T~* ZZZ~~~~P(~,!~)", r$=O if (i,f)*{(1,2) +D 

Therefore, we have, in any orthonormed system of coordinates 

t;~(fO,.O)=(+)'i' [Vi% + v+J flo~to) (4.8) 

Repeating the above reasoning for the tensor ~-0, we find that it is also defined by Eq. 

(4.8). Since the point (~,,z,)E r" is arbitrary, this implies the continuity of the deviator 

of the tensor 7 on r', and (4.5) then implies also the continuity of the whole tensor 7. This 

proves the following theorem. 

Theorem 5. The velocity jump [I:] touches the surface of discontinuity v", The stress 

tensor fif is continuous everywhere on p. When (to, x,)E r* I the deviator of the tensor 
7 is given by formula (4.5). 
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THE BOUNDARY LAYER IN THE FLOW OF A PLASTIC 
MEDIUM NEAR A ROUGH SURFACE* 

L.M. FLITM?Q.' 

High-speed flow of an incompressible plastic medium past a rigid rough 
surface with slippage along it is investigated. It is assumed that the 
ratio of the yield point of the medium to the dynamic pressure in the 
flow is small. An asymptotic representation of the solution is constructed, 
based on the assumption due to Lavrent'ev that inthe case of flows with 
such properties the principal parts of the velocity and stress fields are 
represented by the corresponding fields of an ideal fluid. Equations are 
obtained describing the flow in the boundary layer. Group-theoretic analysis 
is usedtofind their solution for flows past wedges and cones. The thickness 
of the boundary layer is estimated. 

1. Let us consider the high-speed flow of an incompressible plastic medium past a fixed 
impermeable surface, with the particles slipping along the surface. The stresses in the 
medium satisfy the Mises plasticity condition with constant k /I/. We assume that 

.i=jrh(pc?)<l (1.1) 

where p is the density of the medium and c is the characteristic velocity of the flow. Condition 
(1.1) means that the level of the stress deviator is small compared with the dynamic pressure 
of the flow. The condition can be satisfiedin the flows possessing high deformation rates. 
It can be expected, by virtue of (1.11, that the velocity of stress fields will differ little 
from the corresponding fieldsinthe analogous problem for a perfect fluid. 

The perfect fluid model was widely used in /2/ in calculating the rigid, intensely 
deformed materials. In some cases, however, it is useful to know the magnitude of the 
correction related to the density of the medium. The problem was studied earlier in /3/ for 
several specific cases. In /4/ expansions of the velocity and stress fields over short 
distances from the boundary were constructed for the slow flows f = co:. The boundary layer 
in a viscoplastic medium was studied in /S--7/ assuming that no slippage of the particles along 
the boundary took place. 

Below, using the results of /3/, we obtain equations describing the flow in the boundary 
layer, differing appreciably from the corresponding equations for viscous flow and /5-7/and 
use them as the starting concepts. Group-theoretic analysis methods /8/ are used to obtain 
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